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Damping of the wave packet motion in a general 
time-dependent quadratic field 

B Kemaudi and E S Hernandez$ 
Nuclear Science Division, Lawrence Berkeley Laboratory, University of California, 
Berkeley, CA 94720, USA 

Received 19 September 1979, in final form 27 November 1979 

Abstract. We provide a framework for the study of a quantal time-dependent oscillator in 
the presence of a loss mechanism. Previous approaches to partial aspects of the problem are 
analysed and cast into a unified global picture. Several alternative descriptions of the 
situation are analysed and it is shown that the proper generalisation of the Hamiltonian 
formulation by Kostin is adequate for the case under consideration. Applications to a 
number of problems in which the mass of the oscillator is a given function of time are 
presented, including cases in which the mass becomes infinite. 

1. Introduction 

The problem of quantising the damped motion of a particle in a quadratic field has 
received considerable attention (for a review see Hasse 1975). These previous works 
usually deal with an oscillator with constant mass and stiffness placed in the presence of 
a dissipative force F = - y X ,  y also being a constant. In addition, there exists a 
substantial body of work concerning the study of a classical, undamped harmonic 
oscillator with arbitrary time dependence in its parameters (Lewis 1967, Symon 1970, 
Howard 1970). 

The present paper aims at unifying these views in order to provide a treatment of a 
quantal oscillator in the presence of a dissipation mechanism, in the most general 
situation in which the mass, the quadratic field and the damping are arbitrary functions 
of time. To achieve this goal, we will generalise the classical problem, allowing the 
time-dependent oscillator to be damped (see 0 2). In 0 3, we take advantage of standard 
quantisation rules and derive equations of motion for both the first and second moments 
of the wavefunction. In § 4, we introduce the proper generalisation of already existing 
quantal descriptions of damping that do not possess a classical equivalent (Hasse 1975). 
An analysis of the approaches presented in § §  3 and 4 allows us  to choose one 
satisfactory representation of the quantal problem. We limit ourselves to the study of 
Gaussian wave packets; this restriction is not a very dramatic one, since a number of 
applications can be derived on that assumption. Some typical examples will be 
presented and discussed in 5 5. 
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2. The classical problem 

In this section we will discuss the classical description of the motion of a damped 
oscillator. The firm basis for this study is, of course, Newton’s equation: 

p = -  y ( t ) ~  - m (t)a2(t)x. ( 1 )  

P = m (r)X. (2 )  

The kinetic momentum is defined as 

The dotted variables are time derivatives and the friction parameter y, the mass m 
and the frequency SZ may depend on time. 

Although equation ( 1 )  cannot be derived from a Lagrangian containing a conser- 
vative potential, we can write a time-dependent Lagrangian that leads to the correct 
equations of motion, namely 

L(X,  X,  t )  = Imo exp(f(t))[X2 - CL’(~)X’].  (3) 
This is a generalisation of the Lagrangian proposed by Kana; (1948). Here f ( t )  

contains the time dependence of both mass and friction; we require only that f(t) and 
n(t) are differentiable functions of time. The problem originally discussed by Kana: is 
recovered when f ( t )  = yt with constant y. 

The canonical momentum is defined as 

P = JL/aX = moX exp(f(t)). 

P = ( m d m  ( t ) )  exp(f(t))P. 

H = (P2/2mo) exp(-f(t)) + ( m o / 2 ) a 2 ( t ) ~ ’  exp(f(t)). 

E = T + v = (P’/ 2 m ) + $m a2x2. 

(4) 

( 5 )  

(6) 

It differs from the kinetic momentum P given by equation ( 2 ) ;  their relationship is 

Accordingly the Hamiltonian associated with the Lagrangian (3) reads 

Notice that in general we cannot identifyH with the energy E of the oscillator, since 

We have E = H only when P and P coincide; this happens in the absence of 

Hamilton’s equations of motion are 
dissipation for any time dependence of m and CL. 

If we introduce the kinetic momentum (see equation (2)) ,  we recognise Newton’s 
equation, 

x + fX + n2x = 0. 

E = (ni /m - 2 f ) p 2 / 2 m  ++(ni/m + ~ C I / R ) ~ O * X ~ .  

In addition, equations (7a )  and (7b)  lead to the rate of energy change, 

(8) 

If we consider a damped harmonic oscillator with constant mass and frequency, E takes 
the well-known form 

E = - y ( P 2 / m ) .  
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To introduce a time dependence for the mass, we can write 

and 
f ( t )  = log m/mo + yt 

E = - ( y  + m/2m)pL/m.  

We can see that the variation of mass acts like an extra damping term when m is 
positive. 

3. The quantal problem 

The problem of the quantisation of a damped harmonic oscillator has been analysed by 
several authors (see, for example, Hasse (1975)) in the case of constant mass and 
stiffness. Two lines are usually followed: (i) the straightforward quantisation of the 
classical Hamiltonian enforcing the principle of correspondence, and (ii) the con- 
struction of an ad hoc Hamiltonian that does not possess a classical analogue. 

Both approaches are legitimate if 
(i) the expectation values 

x = (2) and P = (6) (9) 
(where 2 and i are respectively the quantal operators associated with the canonical 
variables) satisfy the classical equations of motion, since these are linear; 

(ii) the uncertainties in coordinate and kinetic momentum fulfil the Heisenberg 
relation. The quantisation procedure only guarantees that the relation is preserved for 
the canonical variables and particular attention must be paid to the formalisms in which 
canonical and kinetic momenta differ. Additional restrictions may be provided, 
depending on the particular problem we want to analyse. 

The quantal operators 2 and i display fluctuations that do not have a classical 
equivalence. Following Hasse (1978), we define x, 4, the fluctuations of 2 and 6, 
respectively, and the correlation u, as 

,y = ( 2 2 ) - x 2 ,  ( loa)  

4 = (8”)-$, ( l o b )  

As 2 and 6 are canonical conjugates, they satisfy the Heisenberg uncertainty 

u = $ ( $ + ~ 2 ) - x P .  (10c) 

/Y4 25 h2/4. (11 )  
principle 

Most physical situations we are interested in are expressed through Gaussian wave 
packets, for which the inequality (11 )  becomes a strict equality binding the three 
fluctuations: 

x4 = U’ + h2/4. (12)  
The time evolution of the first (equation ( 9 ) )  and second (equation (10)) moments of 

the wave packets can be derived using the definition of the total derivative of a given 
operator A:  
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The first moments x and p are fixed by Ehrenfest's limit, and the second moments 
are solutions of 3 set of three coupled first-order differential equations. In most 
quantisation procedures, as we will see later, this system may be decoupled and 
provides a nonlinear differential equation for x, namely 

Here, g(r ) ,  h ( t )  and k ( t )  are well-defined functions of time whose explicit form 
depends on the particular time-variation of the damping and the harmonic oscillator 
parameters. 

This equation takes a simpler form, if we introduce the width U of the wave packet: 
1/2 1/2 u ( t ) = W h )  x ' 

ii +g(t)Li + h(r)u = [ k ( t ) u 3 ] - ' .  

We obtain 

(14a) 

This is an equation describing a forced and damped oscillator. Although in the general 
case we do not dispose of analytical solutions, they are available in a few simple 
situations that we explore later. 

It is interesting to notice that if we introduce the reduced width W(r)  through the 
definition 

u ( r )  = W(r )  exp - 7  g ( r )  dt  , ( * I  ) 
we can rewrite equation (14a) in a compact form 

W + w 2  W = d(t) W - 3  (14b) 

that proves to be useful when comparing different formalisms. The reduced frequency 
w ( r )  and the function d(t)  can be shown to be 

d = k-' exp( 2 1 g ( t )  dr). 

Equations ( 1 4 4  and (14b) are generalisations of the auxiliary equation introduced 
by Lewis (1967) in his search for the invariant of the classical time-dependent oscillator. 
It can be proved that a quantal invariant operator may always be written in terms of the 
fluctuations in the case of the undamped oscillator (see Hernandez and Remaud 1980). 
In the presence of damping, such a quantal invariant can be found only in some specific 
cases (Remaud and Hernandez 1979). 

4. Quantal Hamiltanians 

In this section we will present in a unified description the various approaches used in the 
literature to study damped oscillators and we shall extend them to the general 
time-dependent oscillator. Since all these approaches have been chosen to provide the 
exact equations of motion for x and p ,  we will concentrate on the properties of the 
second moments. 
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4.1, Presentation of the various Hamiltonians 

4.1.1. General time-dependent quantal Hamiltonian. Straightforward quantisation of 
equation (6) gives 

In order to write the Hamiltonian g, we have quantised the canonical momentum p, 
whose relationship with the kinetic momentum P is given by equation ( 5 ) .  This feature 
induces a difference between the fluctuation q5 as defined in equation ( lob)  and the 
uncertainty in the kinetic momentum Ap;  we have 

( A P ) ~  = (m/md2 exp(-2f(t)M. 

Thus the uncertainty product of position and kinetic momentum follows the law 

AxAp 5 (h/2)m/mo exp(-f(t)). (16) 

It is interesting to notice that if we define the energy operator ,!? as 

B = ( m / m o ) A  exp(-f(t)) 

the mean value (E) satisfies exactly the equation (8) for the classical rate of change (see 
Hasse (1975) for the discussion of the oscillator with constant mass and stiffness). 

Applying equation (13) to the quantal operators in equations (10) we find the 
following set of coupled first-order differential equations: 

x = a m 0  exp(f))-'a, 

4 = -2(mo exp(f))n2a, 

= -(mo exp(f))n2x + (mo exp(f))-'d. 

We can easily check that the condition (12) defining a Gaussian wave packet is 
preserved by the above equations of motion. 

In table 1, we list the actual form for the functions g ( t ) ,  h ( t ) ,  k ( t ) ,  w ( t )  and d ( t )  as 
defined in the preceding section. In this particular case, it can be shown that the motion 
of q5 can be decoupled; and in the same way as for x, we can define a width U (t) for the 
momentum distribution: 

v ( t )  = (2/hy2q5? 

Table 1. Comparison among the functions g( t ) ,  h( t ) ,  k ( t ) ,  U ' ( [ ) ,  and d ( t )  appearingin 5 3 of 
the text for the various Hamiltonians analysed in the paper. Notice that if f(t)= 
In(m/mo)+Jy(t)dt, the reduced frequencies U *  for the GTD and Hasse (i.e. y ' = y / 2 )  
Hamiltonians are identical. 

General time-dependent Hasse Kostin 
(GTD) Hamiltonian Hamiltonians Hamiltonian 
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u ( t )  is the solution of a second-order differential equation 

U - (f + 2h/~)zj + a2u = m i n 2  exp(2f)/v3. (17) 

4.1.2. Hasse’s Hamiltonians. Hasse (1978) has shown that the Hamiltonian 

synthesises the several nonlinear quantal frictional potentials presented in the lit- 
erature. They differ only by the value of the parameter E :  Albrecht (1975) has studied 
the case E = 0, Sussmann (1973 Los Alamos seminar talk, unpublished) the case E = 1 
and Hasse (1975) E = *+. 

We can assume any time-dependence for m, y and R;  the equations of motion for 
the fluctuations are the same as for the time-independent oscillator (Hasse 1978): 

x = 2 y ’ x  + 2a/m, 

6 = -mR2x + d / m ,  

q4 = -2 y 1 4  - 2mn2a, 

with y ‘  = E Y .  

These expressions are consistent with the conservation of the Gaussian shape of the 
wave packet (see equation (12)). Under this requirement, we can extract closed-form 
equations for the second moments. The equation for ,y is written as described in Q 3 (see 
equations (14a) and (14b)) and the results are displayed in table 1. Similar expressions 
can be found for 4 and the momentum width u ( t )  as follows: 

U - ( k / m  + 2h/~)zj + [a2 - y t 2  - y ’ ( k / m  + 2 h / ~ )  + = m2a2/u3 ,  

which is to be compared with equation (17). 
The frictional term in the Hamiltonian (18) has been devised to yield the correct 

Ehrenfest limit for the centre of the wave packet. It does not possess a classical 
analogue. In fact, the expectation value of the operator Of.,,, 

Of, = ri - f - O, 

( O),, = y l a .  

is 

In general cases, the energy differs from the expectation value of the Hamiltonian. 

4.1.3. Kostin’s Hamiltonian. It is also well-known that a former representation for 
friction on a quantal particle is due to Kostin (1975). It has been investigated too by 
Kan and Griffin (1974) in their fluid mechanical interpretation of the Schrodinger 
equation. The generalisation for the general time-dependent oscillator reads: 

where 4 and $* are the wavefunction and its complex conjugate, respectively. This 
time-dependent Hamiltonian has a solution that describes the motion of a Gaussian 
wave packet (Hasse 1975): 
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Here a is the complex time-dependent width, whose relationship with the real 
fluctuation ,y is (Hasse 1978) 

+x-l = Re(&-'). 

In addition, L is equivalent to the classical Lagrangian: 

L(X, p ,  t )  =p2/2m -imR2x2 

and 0 is a real phase factor. 

form 

It is easy to verify that ( pfr) is exactly zero, and then the expectation value of the energy 
is identical to the expectation value of fi. 

With the above wave packet, the frictional term in Kostin's Hamiltonian takes the 

Pfr = yp  (x^ - x ) + tih y [ ( i  - x )' - XI( 1 /a - 1 /a *). 

The equation of motion for the second moments are, in this case, 

x = 2u/m ( t ) ,  Goa) 
4 = -2m(t)R2(t)u-2y(t)4 ++hZy(t)/ ,y,  

6 = -m(t)R2(t)X ++/m(t ) -  y ( t ) u .  (20c) 
As in the previous examples, the motion of ,y and q5 can be decoupled (see table 1). 

4.2. Discussion 

The aim of this section is to provide arguments for the choice of the best description of 
damping on a time-dependent oscillator. 

(a) The general time-dependent Hamiltonian presents a serious shortcoming in the 
presence of damping. If we examine the equation (16) we realise that for sufficiently 
long time the uncertainty product AxAp can become smaller than h/2. This is a 
common feature to all descriptions that use different operators to represent classical 
and canonical moments. Senitzky (1960) has shown that this effect is due to the neglect 
of the fluctuations in the loss mechanism itself. This limitation hampers the use of the 
Hamiltonian (15) in the quantal study of the damped harmonic oscillators. 

(b) The Hamiltonians of §§ 4.1.2 and 4.1.3 do not violate the uncertainty principle, 
and they yield the correct equations of motion for x and p through their nonlinear 
frictional part. The properties of nonlinear quantum mechanics have been little studied 
(see Immele et a1 (1975) for elements of discussion in the case of the free damped wave 
packet); nonlinear Hamiltonians do not allow the superposition of the wavefunctions 
and then forbid any perturbative approach of their solutions. This difficulty may be 
overcome each time one deals with well-defined wave packets that are exact solutions of 
the time-dependent Schrodinger equation. 

Hamiltonians of §§ 4.1.2 and 4.1.3 do not give the same set of equations for the time 
dependence of fluctuations, and we need to examine their solutions for the damped 
harmonic oscillator with constant parameters, since we feel that a satisfactory descrip- 
tion of damping should account for the decay to the ground state of any wave packet 
containing excited states. 

From table 1, we see that with Hasse's Hamiltonians, the equation for the reduced 
width W ( t )  takes the following form: 

Wiifw2W= w-3 where w = R2 - y". 
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The most general solution can be written as 

W 2 ( t ) = w - 1 [ ( 1 + A 2 + B 2 ) 1 ’ 2 + A  cos2wt-t-B sin2wtl. 

If we take the initial conditions 

W ( t  = 0 )  = WO 

W’(t) = ~2 .t [ W ;  - (w w$’] sin’ wt. 

and W(t = 0) = 0 ,  

we obtain? 

(21) 
The constant solution corresponds to a fluctuation x = h/2mw. In addition, if WO is 

different from we see from equation (21) that W will oscillate without decaying 
to the ground state as we should expect. The wave packet always keeps the memory of 
its initial width in the amplitude of its oscillations; and it is specially puzzling that even if 
WO takes the ground-state value Rn-1’2, the wave packet width will undergo infinite 
oscillations whose amplitude depends on the damping coefficient 7’. 

These observations lead us to the conclusion that Hasse’s Hamiltonians are not 
completely adequate for the treatment of the damped harmonic oscillator. 

(c) In order to initiate the same study with Kostin’s Hamiltonian, we recall the 
equation for the reduced width for the time independent oscillator (see table 1): 

W + w’ w = w - ~  exp(2yt) where w 2  = R2 - y2/4. 

In this case, it is not easy to write down W ( t )  in the form of equation (21). Instead, 

(22) 

we will find it useful to discuss the corresponding equation for the width U :  

ii + y~ + R’U = m-2u-3. 

We can easily realise that there is a constant solution 

U = (ma)’-’’’. 

The corresponding fluctuation ,y turns out to be 

,y = ti/(2mCl), 

and this is the actual dispersion of the ground state. It is illustrative to look for a solution 
of equation (22) that differs only slightly from the constant value (23). 

Let us write u ( t )  as 

u ( t )  = (mi2)-”’+ ~ ( t ) ,  (24) 
with S ( t )  such that lS(t)l<< (mR)-’” for all t. 

Straightforward substitution of equation (24) into equation (22) yields ii’+ y8 + 
It means that 

(2R)% = 0. 

S = So exp(-yt/2) sin(2Rt + 40). 
This shows that any state that differs only slightly from the ground state will decay to 

it. 
We observe from equation (22) that there do not exist steady solutions with large 

deviations from the c0nstan.t value (23), since in that case, the right-hand side becomes 
negligible and U behaves like the position of a damped oscillator. 

+ T h e  authors thank Dr  Hasse for pointing out a mistake in the first version of the manuscript. 
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This is illustrated in figure 1. The time evolution of ,y and the total energy are 
displayed for two different initial conditions, namely, ,yo = 0.2 and ,yo = 4, in units of the 
ground-state fluctuation. We observe that ,y reaches the ground-state value in less than 
three periods. The same is true for x, although it should be remarked that the number of 
oscillations undergone by the fluctuation is twice that of the coordinate. It is also 
interesting to look at the evolution of the energy. The slight initial difference between 
the two curves can be traced back to the contribution of the fluctuations ,y and 4 to the 
potential and kinetic terms, respectively. 

Figure 1. Time evolutions of energy, fluctuation and position of a Gaussian wave packet in 
units of hno/2, h/(2mono) and h"z / (mono) ' /2  respectively. The time unit is the natural 
period. These calculations correspond to Kostin's potential with constant mass and 
stiffness; the damping parameter is 0.5 in units of the inverse period. The full lines 
correspond to an initial fluctuation ,yo = 0.2, the dashed lines are for an initial ,yo = 4. The 
initial displacement xg is always equal to 1. 

In view of these considerations and since the introduction of the time dependence in 
the oscillator parameters does not change the form of the equations, we can state that 
Kostin's Hamiltonian description is adequate to face the study of a general time- 
dependent Gaussian wave packet. In the following section, we will present several 
applications of this formalism. 

5. Applications 

In the next two sections we are going to study some specific interplays between mass 
variation and damping, that might be connected with a number of physical situations. In 
§ 5.1 we will present typical results for systems initially in the ground state, that undergo 
a displacement and different mass variation laws. In § 5.2 we deal with a specific 
example inspired by situations appearing in heavy-ion physics. 
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5.1. Departures from the ground state 

The system we will consider is a displaced ground-state wave packet, that presents at 
t = 0- the following characteristics: 
mo = 1, co = 1, ,yo = h / 2 ,  do = h / 2 ,  r0 = 0 and xo = 1, p o  = 0 ;  we consider that at t = 0 a 
mass variation law m ( t )  is superimposed on mo. 

5.1.1, Exponentially increasing mass. We choose the following variation law for m ( t ) :  

m = l ;  t s o ,  

m =eA';  t 3 O , A 2 O 0 .  

In this example, the mass presents a singularity at infinite time. Small values of A 
provide us with a way of studying adiabatic behaviours. As mlm = A, the functions g ( t )  
and w ( t )  (see table 1)  take the following simple form: 

g o )  = y + A ,  

~ 2 ( t ) = e - h r - ~ ( y + A ) 2 .  

Equation ( 1 4 a )  then becomes 

i i + ( y + ~ ) ~ + e - " u  = e - 2 h t ~ - 3 .  

One can solve this equation for sufficiently large time under the assumption that U 

remains finite. We find that 

u ( t )  = A + B ( y  + A)- '  exp[-(y + A  ) t ] ,  

and the same result holds for the displacement x ( t ) .  Since the increasing mass will cause 
the kinetic energy to vanish, the asymptotic energy will be purely potential and will 
depend on the final constant values of x and U .  

Typical results are shown in figure 2. We see that, irrespectively of the value of A ,  
the fluctuation ,y remains almost identical to the adiabatic value h / ( 2 m ( t ) R ( t ) ) .  It is 
insensitive to changes in the strength of the damping parameter when A is small enough 
(A = 0.1 in units of the unperturbed frequency). For larger A ,  a slight deviation from the 
adiabatic trend is observed according to different 7's. In contrast, damping has large 
effects on the evolution of the coordinate and momentum: this is reflected in the energy 
curves. 

We observe that for large damping ( y  = 1)  it takes half a period to dissipate most of 
the initial energy, while for small y ( y  = O a l ) ,  dissipation is slower and presents smooth 
oscillations. Both regimes converge asymptotically towards the adiabatic trend E = 
O.Shw(t). 

5.1.2. Singularity at finite time. To illustrate the case in which the mass becomes 
infinite at a finite time we choose the representation 

m = l ,  t < O  

m = exp[t/(TI - t ) l ,  t 3 0 .  

T1 is a parameter that fixes both the position of the singularity and the rate of 
increase of the mass. The calculations are presented in figure 3. The striking result is 
the fact that the final energy presents an inversion as a function of the damping 
parameter y. As in the preceding case, the final energy is purely potential. For values of 
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Figure 2. The same as figure 1, but for an exponentially increasing mass. Full lines 
correspond to the damping parameter y = 0.1, dashed-dotted lines correspond to y = 1. 
Both lines coincide in the time evolution of x when m/m = 0.1. The initial conditions are 
those of a displaced wave packet with the ground-state width. 

_ I  I 

I 1 I I I 

-1 I '\.-,.' I , 
0 1 2 

n, f / 2 H  

Figure 3. The same as figure 1, but with a mass going to infinity at t = 2. The full, dashed and 
dashed-dotted lines correspond respectively to y = 1+99,0.5 and 0. The initial conditions 
are the same as in figure 2. 

y close to the critical one (i.e. y=2fl) ,  the fluctuation x overcompensates the 
attenuation of the position x and causes a large potential energy. In addition, we notice 
that the final displacement is not zero for small damping. The actual value of this 
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displacement depends on the initial phase; accordingly we may expect the final energy 
to present some range of variations for small 7's. 

In contrast with the first example, we see that the evolution of ,y presents a large 
departure from the a.diabatic trend. During the process, there is an interplay between 
the role of damping and mass variation. For short times when ni/m is small, the 
damping parameter y determines the slope with which ,y comes apart from the adiabatic 
curve. Afterwards, the term ni/m overcomes y and accounts for the final state of the 
system. 

5.1.3. Periodic mass variation. A variable mass provides a means of simulating an 
input or removal of energy into the system. An explicit representation that accounts for 
several interesting features is a periodic perturbation on a constant mass, i.e. 

m = 1, t<O 

tn = 1 + a  sin At ,  t z 0  

with la 1 < 1. 
This time variation in the mass can be traced to an external oscillating field; 

consequently, we can expect some resonant behaviour. A search through a wide range 
of parameters CY and A allowed us to obtain the results displayed in figure 4. In this case, 
the frequency of the mass is twice that of the unperturbed oscillator. The first point to 
notice is that both the energy and the fluctuation oscillate with the frequency of the 
mass; the deformation in the peaks of the energy curve can be associated with the fact 
that the position x is oscillating with the shifted frequency of the damped oscillator. 
Second, the resonant behaviour disappears when the strength of the damping becomes 

0, t / 2 x  

Figure 4. The same as figure 3, but with a mass with a periodic perturbation m = 
1 +0.5 sin(2Ot). The dashed and full lines correspond to y = 0.25 and y = 1.99 respec- 
tively. The initial conditions are the same as in figure 2. 



Damping of wave packet motion 2025 

close to the critical value. In this case, ,y and E perform constant amplitude oscillations 
around the ground-state values. A selection of the parameters a and A ,  other than 
those corresponding to figure 4, yields modulation of the displayed curves and a much 
smoother increase of the amplitudes. 

5.2. Infinite mass system at t = 0 

It has been suggested (Myers 1979, private communication, Berlanger et a1 1979) that 
the charge equilibration process during heavy-ion reactions may be pictured as the 
relaxation of a collective coordinate placed in a quadratic potential. As this equili- 
bration is impossible when the ions are far apart (before and after the reaction), this 
suggests that the collective coordinate corresponds to an oscillator whose variable mass 
is infinite at t = 0, reaches a finite value during the interaction time and becomes infinite 
again when the two ions split apart. Not wanting to go into the physical details, we are 
going to take a simplified representation of the above mentioned situation; namely, an 
oscillator with constant stiffness c = 1, a constant damping y and a mass given by the law 

[exp(Tdt -- if 0 s  t < T1 

m(t )=  1 if T1 G t < T I  + T2 
2 

T3 -1) if T ~ + T ~ < ? G T ~ + T ~ + T ~ .  lexp( T1 + T2 + T3 - t 

A typical pattern for m(t)  is presented in figure 5 for a particular selection of the 
intervals T I ,  T2 

E 
L 

and T3.  

I I , I I I 

Figure 5. Typical evolution of the inverse of a mass that goes to infinity at t = 0 and t = 5 (see 
0 5 . 2  in text). 'The time intervals are TI = 1 and T2 = T3 = 2. 

When m ( t )  is very large, we can simplify the equations of motion for both first and 
second moments (equations (1) and (10)) provided that the initial p is finite and the 
initial x is not zero. 

In that case, we have 

x = xo, 

x = xo, 

U = ( x o / Y ) [ ~  -exp(-rt)l, t -0 .  

P = P O -  ( x o / Y ) [ ~  - exp(-rt)l, 

4 = h2/4x0+ (xo/r2N1 -exp(-yt)12, 

These are the equations governing the initial motion when the initial correlation cr is 
zero, and it is interesting to realise that they are independent of the actual value of the 
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mass. A similar feature is expected in the vicinity of the second singular point, 

In figure 6 we display the time dependence of the energy for various damping 
parameters and typical values of the time intervals. In that case, the equation governing 
the evolution of E is 

t =  Ti i Tz+ T3. 

E = - ( y + m / 2 m ) ( 4  + p 2 ) / m  + f i 2 y / ( 4 x m ) .  

i 
I 
\ 

. - - -, 
- - - - - -_____ 1 

'. ._ __ 
1 
0 2 L 

Oof/ZH 

Figure 6. Time evolution of the total energy for the oscillation whose mass evolution is 
displayed in figure 5 .  The full, dashed and dashed-dotted lines correspond to damping 
parameters y = 1.99, 0 . 2 5 ,  0, respectively. The initial values are xo = 0.2 and xo = 1. 

For this particular mass law, E = 0 for both t = 0 and t = TI  + T2 + T3. This feature is 
clearly visible in figure 6. 

Due to the action of the damping on 4 and p 2 ,  dramatic effects are induced on the 
rate of energy change even when m / m  is large: the height of the plateau is strongly 
dependent on the value of y ;  in addition, the larger the y parameter, the shorter is the 
elapsed time before reaching this plateau. 

As in a preceding example (§ 5.1.2), the final energy is only potential and depends 
upon the final value of fluctuations and displacements. In figure 6 ,  we see that when 
y = 0, there is a larger residual displacement that is determined by the history of the 
system (initial displacement, length of the plateau, etc.). A sensible amount of damping 
on a sufficiently long plateau causes x to vanish; accordingly, the final energy is given by 
the fluctuations only. These are displayed in figure 7 .  We have assumed a small initial 
width in order to represent a well-localised wave packet; this actual value is critical for 
determining the amplitude of the oscillations in x. The wide oscillations of the 

0 2 L 

no t / 2 n  

Figure 7. Time evolution of the fluctuation ,y corresponding to the situation of figure 6 .  
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undamped case are smoothed away by finite y values and disappear completely when y 
is close to the critical damping. 

For sufficiently (not too) large values of damping, the system loses the memory of its 
past history in a couple of periods. In that case, the whole problem reduces to the study 
of the evolution of an initial ground state when a perturbation in the form of an 
increasing mass is superimposed. 

For smaller amounts of damping, the final results are much more sensitive to the 
particular selection of the time intervals and initial conditions. 

For the sake of completeness, in figure 8 we display the time evolution of the 
coordinate x .  It is worthwhile to remark that although the frequency of the oscillations 
in the fluctuation is twice as large as that of the coordinate, both x and x follow 
essentially the same pattern. 

0 0  t / 2 K  

Figure 8. Time evolution of the position x corresponding to the situation of figure 6 .  

6 .  Conclusions 

We have generalised both the existing procedures for the study of a classical, 
undamped, time-dependent oscillator and the methods for describing a quantal, 
damped, time-independent oscillator. We have been able to provide tools for the 
analysis of a general quantal, damped, time-dependent oscillator in the case in which 
the quantal state can be represented by a Gaussian wave packet. 

We have found criteria to select, among those that are available to us, the only 
correct description for damping of a Gaussian wave packet in a quadratic field. This 
description is correct in the sense that it both preserves the uncertainty principle and 
yields the expected asymptotic behaviour. We have shown that this formalism holds 
even in the case of a mass reaching an infinite value. Kostin’s frictional potential 
provides the right decay of any Gaussian wave packet to the ground state, in the 
presence of dissipation. We have illustrated possible applications of this method in a 
number of examples. One particular case that deserved our attention was the time 
evolution of the ground state when a perturbation, i.e. a displacement and a time- 
variation in the mass, is applied. There is a definite interplay between damping and 
mass variation; some important features are: (a) When the logarithmic derivative m / m  
is smaller than unity, the fluctuation ,y remains close to the adiabatic limit h /2m (t)a(t) 
and damping induces second-order effects in its evolution. In this situation, damping is 
mainly used to dissipate the energy of the motion. (b) When m/m becomes large (for 
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example in the vicinity of a singularity at a finite time) strong deviations from this 
adiabatic trend can be observed. Nevertheless, the initial slope of the departure from 
the adiabatic trend is determined by the value of the damping parameter. We have also 
seen that a perturbation in the ground state can account for a resonant behaviour; in this 
case the presence of dissipation provides attenuations of the motion and of the increase 
in the amplitude of the fluctuation x; the critical damping ensures steady oscillations in 
both the fluctuation and the energy. 

An interesting problem connected with the excitation of collective modes in some 
nuclear (i.e. heavy ion) reactions is that of an initially infinite mass, that lowers to a finite 
constant value and rises to infinity afterwards ( Q  5.2). Such a situation involves a 
number of parameters, namely, initial width and displacement of the wave packet, 
duration of the mass decrease, length of the plateau, duration of the mass increase, and 
damping. Only a detailed treatment of the physics here contained can fix their actual 
values. However, we have illustrated the expected behaviour of the wave packet for a 
particular selection of the parameters, and shown that damping is essential in deter- 
mining the evolution pattern. 

As a final statement, we should remark that since there is no unique quantal 
description of friction, any particular application of dissipation models should be 
preceded by a critical examination, as we have intended here for the case of a Gaussian 
w2ve packet in the most general harmonic field. 
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